Lifting Neural Constraints Could Turn Back Time
A baby’s brain is a thirsty sponge, slurping up words, figuring out faces and learning which foods are good and bad to eat. Information about the world flooding into a young brain begins to carve out traces, like rushing water over soft limestone. As the outside world sculpts the growing brain, important connections between nerve cells become strong rivers, while smaller unused tributaries quietly disappear.
In time, these brain connections crystallize, forming indelible patterns etched into marble. Impressionable brain systems that allowed a child to easily learn a language, for instance, go away, abandoned for the speed and strength that come with rigidity. In a fully set brain, signals fly around effortlessly, making commonplace tasks short work. A master of efficiency, the adult brain loses the exuberance of childhood.
But the adult brain need not remain in this petrified state. In a feat of neural alchemy, the brain can morph from marble back to limestone.
The potential for this metamorphosis has galvanized scientists, who now talk about a mind with the power to remake itself. In the last few years, researchers have found ways to soften the stone, recapturing some of the lost magic of a young brain.
“There’s been a very, very significant change,” says Richard Davidson of the University of Wisconsin–Madison. “I don’t think the import of that basic fact has fully expressed itself.”
Though this research is still in its early stages, studies suggest techniques that dissolve structures that pin brain cells in place, interrupt molecular stop signals and tweak the rush of nerve cell activity can restore the brain’s youthful glow. Scientists are already attempting to reverse brain rigidity, boosting what’s known as “plasticity” in people with a vision disorder once thought to be irreversible in adults.
These efforts are not an exercise in neural vanity. A malleable brain, researchers hope, can heal after a stroke, combat the decline in vision that comes with old age and perhaps even repair a severed spinal cord. An end to childhood — and the prodigal learning that comes with it — does not need to eliminate the brain’s capacity for change. “There are still windows of opportunity out there,” says neuroscientist Daphné Bavelier of the University of Rochester in New York. “It may require a little more work to open them, though.”
Source: Science News / Laura Sanders / Photo Credit: Michael Morgenstern